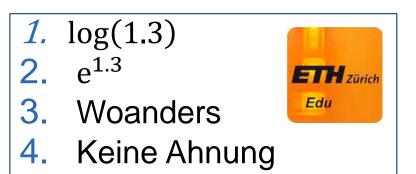
Quantile und Transformationen (I)

- Das 90%-Quantil der Zufallsvariable X liegt bei 1.3.
- Dann liegt das 90%-Quantil von e^X bei



Quantile und Transformationen (I)

- Das 90% Quantil von X liegt bei 1.3: $P(X \le 1.3) = 0.9$
- Da e^x eine monoton wachsende function ist, gilt: $P(e^X \le e^{1.3}) = 0.9$
- Das heisst, dass das 90% Quantil von e^X bei $e^{1.3}$ liegt.
- Im Allgemeinen gilt: Quantile transformieren bei monoton wachsende Transformation mit (siehe Skript, Ende von Sektion 2.3.6)

Quantile und Transformationen (II)

- Das 90%-Quantil der Zufallsvariable X liegt bei 1.3.
- Dann liegt das 10%-Quantil von $-e^X$ bei
 - 1. $-e^{1.3}$
 - $2. 1 e^{1.3}$

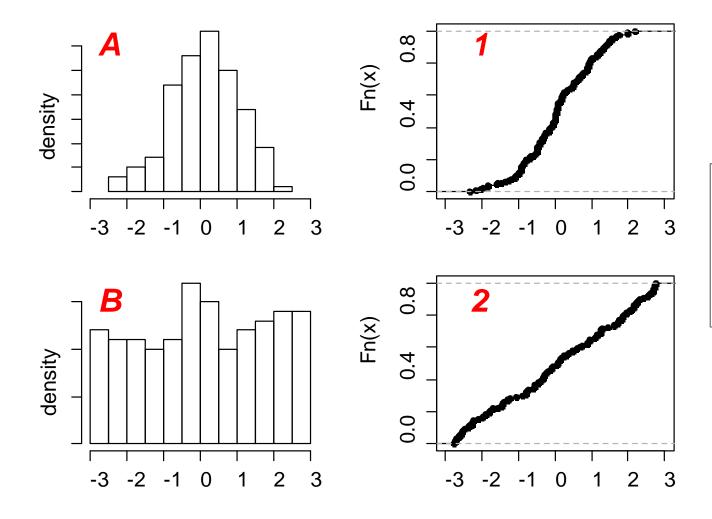
Quantile und Transformationen (II)

- Wir wissen jetzt schon, dass das 90% Quantil von e^X bei $e^{1.3}$ liegt: $P(e^X \le e^{1.3}) = 0.9$
- Daraus folgt

$$P(-e^X \ge -e^{1.3}) = 0.9$$
 und deshalb $P(-e^X \le -e^{1.3}) = 1 - P(-e^X \ge -e^{1.3}) = 0.1$

■ Das heisst, dass da 10% Quantil von $-e^X$ bei $-e^{1.3}$ liegt

Zuordnung Histogramm / Verteilungsfunktion



Zuordnung

- 1. A1 / B2
- 2. A2 / B1
- 3. Keine Ahnung

Zuordnung Histogramm / Verteilungsfunktion

- Histogramm A hat einen Glockenform, wobei Werte im Zentrum der Verteilung häufiger auftreten. Entsprechend muss die kumulative Verteilungsfunktion im Zentrum der Verteilung schneller ansteigen.
- Histogramm B zeigt eine flache Verteilung (etwa Unif(-3,3)). Entsprechend muss die kumulative Verteilungsfunktion überall etwa gleich schnell ansteigen.
- Es ist also A1 / B2.